
EECS442 Final Project Report

Qichen Fu∗, Yige Liu∗, Zijian Xie∗

University of Michigan, Ann Arbor
{fuqichen, yigel, xiezj}@umich.edu

Abstract

We are very interested in how machines can automati-
cally describe the content of images using human language.
In order to gain a deeper insight of this computer vision
topic, we decided to implement current state-of-the-art im-
age caption generator Show, attend and tell: Neural im-
age caption generator with visual attention [12]. Our neu-
ral network based image caption generator is implemented
in Python powered by Pytorch machine learning library.
We have identified five major components in our pipeline:
(R1) data prepossessing; (R2) Convolutional Neural Net-
work (CNN) as an encoder; (R3) attention mechanism;
(R4) Recurrent Neural Network (RNN) as a decoder; (R5)
Beam Search to find most optimal caption; (R6) Sentence
Generation and evaluation. BLEU-4 score is picked for
evaluating the quality and accuracy of the generated cap-
tion. We evenly distributed the five components described
above among our group and each member has made equal
contributions to push the project forward. We have success-
fully finished the implementation of the all five components
and are able to train our network on Google Colab (which
provides free GPU resources). Our implementation of this
image caption generator has achieved a very decent accu-
racy quantified by BLEU-4 score (15.5) which is very close
to the result reported in the original paper (18.5). As we
finished training the network and obtained a satisfying per-
formance, we continue to visualize the attention mechanism.

1. Introduction

Training computers to be able to automatically generate
descriptive captions for images is currently a very hot topic
in Computer Vision and Machine Learning. This task is a
combination of image scene understanding, feature extrac-
tion, and translation of visual representations into natural
languages. This project shows some great promises such as
building assistive technologies for visually impaired people

∗Three authors have equal contribution and listed by alphabetic order

and help automating caption tasks on the internet.
There are a series of relevant research papers attempting

to accomplish this task in last decades, but they face various
problems such as grammar problems, cognitive absurdity
and content irrelevance [5].

However, with the unparalleled advancement in Neu-
ral Networks, some groups started exploring Convolutional
Neural Network and recurrent neural network to accomplish
this task and observed very promising results [2]. The most
recent and most popular ones include Show and Tell: A
Neural Image Caption Generator [11] and Show, attend
and tell: Neural image caption generator with visual at-
tention [12]. While both papers propose to use a combina-
tion of a deep Convolutional Neural Network and a Recur-
rent Neural Network to achieve this task, the second paper
is built upon the first one by adding attention mechanism.
As shown in Figure 1, this learnable attention layer allows
the network to focus on a specific region of the image for
each generated word.

Figure 1. This figure is from Show, attend and tell visualization
(adapted from [12])

2. Methodology and Architecture
We have written data preprocessing scripts to process

raw input data (both images and captions) into proper for-
mat; A pre-trained Convolutional Neural Network architec-
ture as an encoder to extract and encode image features into
a higher dimensional vector space; An LSTM-based Recur-
rent Neural Network as a decoder to convert encoded fea-
tures to natural language descriptions; Attention mechanism
which allows the decoder to see features from a specifically

1



Figure 2. Show, attend and tell Architecture (adapted from [12])

highlighted region of the input image to improve the over-
all performance; Beam Search to figure out a caption with
the highest likelihood. Each individual component of our
generator pipeline will be discussed in detail below.

2.1. Data Sources

We have identified the three most commonly used image
caption training datasets in Computer Vision research do-
main - COCO dataset [6], Flickr8k [3] and Flickr30k [8].
These datasets contain 123,000, 31,000 and 8,000 caption
annotated images respectively and each image is labeled
with 5 different descriptions. Currently, Flickr8k dataset
which contains the least number of images is used as our
primary data source over the other two due to our limited
storage and computational power.

In addition, we also used sanitized Flickr8k data split
open-sourced by Andrej Karpathy [4] as a part of our input
dataset. This data split has converted original Flickr8k text
data to lowercase, discarded non-alphanumerical characters
and also split data into train, validation, and test subsets.

2.2. Data Preprocessing

Input data are composed of images and captions, and
hence we need to pre-process both the images into proper
format for CNN network and the text captions into proper
format for RNN network. Since our image caption genera-
tor pipeline is leveraging pre-trained state-of-the-art CNN
network (PyTorch vgg-16 [7] which will be further dis-
cussed in section 2.3), we need to transform images into
correct format.

According to PyTorch documentation, pre-trained vgg-
16 model expect that input images are normalized to within
range [0, 1] and as 3-channel RGB images of shape (3 ×

H ×W ), where H and W are expected to be at least 224.
Therefore, data preprocessing involves loading and resizing
image data into (N × 3 × 256 × 256) dimension and nor-
malizing pixel value to be within range [0, 1] with mean =
[0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225].

Besides, since PyTorch requires words be converted to
numbers (indeces) in order to look up word embeddings, we
construct a dictionary of words which is essentially a cor-
pus of frequent words in training captions, including special
tokens such as 〈start〉, 〈end〉, and 〈pad〉. Some words only
appear less than 5 times across the whole training captions,
and in that case it is all represented as 〈unk〉 (unknown).

Furthermore, captions are encoded with the dictionary
described above and stored in a JSON file which can be fed
to RNN model in a later stage.

2.3. Convolutional Neural Network (Encoder)

The encoder needs to extract image features of various
sizes and encodes them into vector space which can be fed
to RNN in a later stage. VGG-16 and ResNet is commonly
recommened as image encoders. We chose to modify the
pre-trained VGG-16 model provided by PyTorch library.

In this task, CNN is used to encode features instead of
classify images. As a result, we removed the fully con-
nected layers and the max pool layers at the end of the net-
work. Under this new construction, the input image matrix
has dimension N×3×256×256, and the output has dimen-
sion N × 14 × 14 × 512. Furthermore, in order to support
input images with various sizes, we added an adaptive 2d
layer to our CNN architecture.

In our image captioning architecture, we disabled gra-
dient to reduce computational costs. With fine-tuning, we
might obtain a better overall performance.

2



2.4. Soft Attention Mechanism

Following the CNN, we built the soft trainable Attention
mechanism introduced in Show, Attend and Tell: Neural
Image Caption Generation with Visual Attention[12]. At-
tention mechanism tells the network which part of the image
should be focused on for generating the next word in the de-
scription. We calculated the attention area through adding
the encoder output and historical state, which is updated in
each iteration.

Figure 3. A demonstration of soft attention model [1]

In implementing the attention layer, we performed lin-
ear transformation on both the encoder output and histori-
cal state output. The linear activated outputs are summed
up and the activation function is ReLU. The weight(alpha)
and the attention area(applying alpha on encoder output) are
returned.

Different from CNN without fine-tuning, the attention
mechanism is trainable with back-propagation. The re-
turned attention area is used later in decoder involving
RNN.

2.5. Recurrent Neural Network (Decoder)

The decoder needs to generate image captions word by
word using a Recurrent Neural Network - LSTMs which
is able to sequentially generate words. The input for the
decoder is the encoded image feature vectors from CNN and
the encoded image captions produced in data preprocessing
stage.

The decoder consists of an attention module designed
and implemented by ourselves, an LSTM cell module and
four fully connected layers provided by PyTorch library for
the initialization of the states of LSTMcell and word dictio-
nary.

When receiving the encoded images and captions, we
first sort the encoded images and captions by encoded key
length of images in descending order. We intend to only

process the encoded images which have caption lengths
greater than or equal to the number of iteration to increase
efficiency and reduce training time.

In each iteration of LSTM network, we first put the his-
torical state of LSTM and the encoded images into the At-
tention module to get the attention-masked images which
have a specific highlighted area. Then we concatenate the
embedded captions of all previous words and the atten-
tioned images and feed them to the LSTM to get the next
state of LSTM. Then, fully connected layers can predict the
probabilities of current word embedding based on the cur-
rent state and append it to the word embedding prediction
matrix.

2.6. Loss Function

The nature of our RNN output is a series likelihood of
words’ occurances, and in order to quantify the quality of
the RNN output, we propose to use Cross Entropy Loss.
This is the most popular and effective measurement for the
performance of a classification model whose output is a
probability value between 0 and 1.

Eentropy = −
N∑
n

tnk ln p
n
k (1)

This equation is adapted from Machine Learning Cheat-
sheet Documentation [9], where N is the number of classes,
t is either 0 or 1, and pnk is the predicted possibility that
observation k is of class n.

2.7. Beam Search

Figure 4. A demonstration of Beam Search in our sentence gener-
ation (Image taken from public Github Repository [10])

The Show and Tell paper [11] presents Beam Search as
the final step to generate a sentence with the highest likeli-
hood of occurance given the input image. The algorithm is
a best-first search algorithm which iteratively considers the
set of the k best sentences up to time t as candidates to gen-
erate sentences of size t + 1, and keep only the resulting best
k of them, because this better approximates the probability
of getting the global maximum as mentioned in the paper.
We tried beam search size from 1 to 5 and the BLEU score

3



evaluation tends to be better under beam size 3 and 4. Thus,
we chose 3 as the beam search size.

Figure 4 is a good demonstration diagram taken from
a github repository [10]. This diagram shows how beam
search avoids picking the highest probability word at each
step (local maximum) and how it alternatively chose the
sequence of words with highest overall probability score
(global maximum).

The specific algorithm for the Beam Search is shown be-
low:

Algorithm 1: K-Beam Search(K)

k← K;
KBeamScores← list(1);
bestKCaption← list(” < begin > ”);
bestKCaptionSequence← [];
bestKScores← [];
while True do

predicted possibility← Pred(image, prevWords);
KBeamScores← TopK(KBeamScores +

predicted possibility);
nextWords← TopK(reverse dic(KBeamScores));
bestKCaption.append(nextWords);
endIndex← list(index(nextWord=” < end > ”));
if len(endIndex) > 0 then

bestKCaptionSequence.
append(bestKCaption[endIndex]);

bestKScores.
append(KBeamScores[endIndex]);

k← k - 1;
end
if k = 0 then

break;
end

end
bestIndex← max(bestKScores);
return bestKCaptionSequence[bestIndex]

3. Experiments
There are several hyperparamters we adjusted in our ex-

periments. Initially, in the training section, we used learn-
ing rate of 4 × 10−4. However, under this condition, the
oscillation of training loss is very significant. As a result,
we used lr scheduler which multiplies 0.99 to lr after each
epoch. The oscillation is reduced with the scheduler. In
addition, without lr scheduler, the best BLUE-4 score we
could achieve was around 13.

We also adjusted the batch size in our experiments. The
initial batch size we used was 5. Given that flicker 8k con-
sists of thousands of images, batch size of 5 was too small
and therefore the loss didn’t converge. As a result, we
changed to batch size of 50. However, the maximum GPU
limit offering by Colab is 12GB, and batch size of 50 made

us exceed the GPU memory limit. Finally, we chose to use
batch size of 32 – this number is within GPU limit, and is
large enough for loss to converge.

4. Evaluation
While the pipeline has been implemented, it is unclear

weather it is absolutely correct and can learn as expected.
Therefore, the imminent task is to train our model and val-
idate that it will learn properly. After the model is correct,
(R6) is a another major component of this project and has
yet to be finished. Sentence generation and performance
evaluation is significantly important because it is the best
way to present how well our caption generator can perform.

4.1. Evaluation Metrics

BLEU-1, BLEU-2, BLEU-3, and BLEU-4 (Bilingual
Evaluation Understudy) is the most commonly reported
metrics in evaluating the quality of text generation in natu-
ral language processing tasks. Here we chose 4-gram BLEU
score(BLEU-4) as our primary evaluation metric. The next
step is to also investigate other metrics (such as METEOR)
mentioned in relevant papers [11, 12] and try to improve our
model to match the papers’ performance.

4.2. Model Performance via BLEU-4 score

Currently, our highest BLEU-4 score achieved within 25
epochs is 15.5 (BLEU-4 is within range 0 to 100). The
BLEU-4 score reported in Show, Attend and Tell [12] on
flickr8k dataset is 19.5, and hence our model is under-
performed compared to the one achieved in state-of-the-art
caption generator. As the progress report feedback sug-
gests, we decided not to invest too much effort and time
to just improve our BLEU-4 score to match what’s reported
in the paper, because these results may be tuned repeatedly
by graduate students and have undocumented hacks.

5. Results
As mentioned in section 2.2, data is encoded to num-

bers via a dictionary of words. After the data is consumed
by the pipeline, the output will also be in the encoded for-
mat which needs to be reversed back into English words in
order to make sense to human. The other important thing
is the output from RNN network is a series of likelihoods
of words (likelihoods). Picking highest likelihood word at
each decode step in RNN tend to yield a sub-optimal result.
Instead, we have implemented Beam Search introduced in
Section 2.7 which is a popular solution for finding optimal
path for decoding natural language sentences. Some gener-
ated captions on test images are presented below.

Apparently, the network generated captions are not all
perfect, some of which miss important information in the
image and others have misidentified visual features. For

4



Figure 5. An example of an incorrectly generated caption

example, the top left image in Figure 5 is ”A little girl in
a white dress is playing a 〈unk〉”. The ladder in the image
is recognized by the CNN network but the RNN failed to
generate the word ”ladder”. The use of 〈unk〉 suggests that
training images has few number of images with ladders or
the word ”ladder” is very rare in training captions.

The other flaw we observed is the network sometimes
fail to separate objects. For example, in the right-most im-
age on the fourth row has two dogs racing. But our network
fails to recognize two dogs, mainly because two dogs are
too close and have some parts appearing connected in the
image. Therefore, the network thinks there is one black and
white dog.

Interestingly, we discovered that images of dogs catch-
ing Frisbee often have very accurately generated captions
in test images and is likely due to large amount of training
images are dogs jumping to catch a Frisbee. Also the pre-
trained CNN may also has lots of knowledge about what a
dog looks like.

5.1. Generated Captions

As shown in Figure 6, Figure 7, Figure 8, and Figure 9,
we have successfully generated mostly grammarly correct
and human readable captions describing what is happen-
ing in the image. Most of the images correctly state what
objects appear in the scene, count number of appearance
and gives an intuitively correct verb to logically complete
the sentence. Colors of the object and spatial relationships
between object are also well captured. For example, the
bottom right image has a caption ”A man in a red shirt is
standing on a grassy hill”. Objects in the images are iden-
tified as ”A Man”, ”Shirt” and ”Grassy hill”. Then CNN
is also able to capture properties of objects such as shirt’s
color is ”red”. Lastly, RNN and Attention Mechanism will
connect these words logically by conjunctions into a valid
sentence.

In addition, we have also included more results we gen-
erated at the end of this report - Figure 14 and Figure 15.

Figure 6. Generated Caption Example1: A brown dog jumps over
a hurdle

Figure 7. Generated Caption Example2: A brown dog is swim-
ming in the water

Figure 8. Generated Caption Example3: A man and a woman are
sitting in a fountain

5.2. Attention Mechanism Visualization

Visualizing attention mechanism allows us to understand
which part of the image is being focused when generating
a specific word, which is essential for improving the net-
work’s scene understanding capability. We implemented

5



Figure 9. Generated Caption Example4: A black and white dog is
looking at a car

our visualization by adding a semi-transparent mask on top
of the original image at each RNN node (each word), such
that the bright region denotes the focus area and dark region
has little influence on the generated word.

Figure 10. Attention Visualization: A young girl with a red scarf

Figure 11. Attention Visualization: A girl in a red dress is standing
on the beach

As we can see in Figure 10, Figure 11 and Figure 13,
the network has different focuses when generating different
words.

Figure 12. Attention Visualization: A man and a brown dog stand-
ing in the snow

Figure 13. Attention Visualization: A surfer rides a wave

6. Conclusion and Future Work
Automatically image captioning is far from mature and

there are a lot of ongoing research projects aiming for more
accurate image feature extraction and semantically better
sentence generation. We successfully completed what we
mentioned in the project proposal, but used a smaller dataset
(Flickr8k) due to limited computational power. There can
be potential improvements if given more time. First of
all, we directly used pre-trained CNN network as part of
our pipeline without fine-tuning, so the network does not
adapt to this specific training dataset. Thus, by experiment-
ing with different CNN pre-trained networks and enabling
fine-tuning, we expect to achieve a slightly higher BLEU-
4 score. Another potential improvement is by training on
a combination of Flickr8k, Flickr30k, and MSCOCO. In
general, the more diverse training dataset the network has
seen, the more accurate the output will be. We all agree this
project ignites our interest in application of Machine Learn-
ing knowledge in Computer Vision and expects to explore
more in the future.

7. Acknowledgement
As mentioned in the README of our published github

repository, our project’s methodology and architecture de-

6



Figure 14. Image and caption pairs generated by our caption generator

sign are adapted from the Show, Attend and Tell Paper [12].
We built the whole project from scratch and hence had en-
countered many implementation obstacles along the way,
many of them are related to PyTorch syntax and proper us-

age. We were able to overcome these issues with helps from
PyTorch developer community, Stack Overflow and by re-
ferring to some relevant public Github repositories.

7



Figure 15. Image and caption pairs generated by our caption generator

References
[1] Jonathan Hui Blog. https://jhui.github.io/

2017/03/15/Soft-and-hard-attention.

[2] Alex Graves. Generating sequences with recurrent neural
networks. CoRR, abs/1308.0850, 2013.

8

https://jhui.github.io/2017/03/15/Soft-and-hard-attention
https://jhui.github.io/2017/03/15/Soft-and-hard-attention


[3] Micah Hodosh, Peter Young, and Julia Hockenmaier. Fram-
ing image description as a ranking task: Data, models and
evaluation metrics. J. Artif. Int. Res., 47(1):853–899, May
2013.

[4] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. IEEE Trans. Pat-
tern Anal. Mach. Intell., 39(4):664–676, Apr. 2017.

[5] Polina Kuznetsova, Vicente Ordonez, Alexander C. Berg,
Tamara L. Berg, and Yejin Choi. Collective generation of
natural image descriptions. pages 359–368, 2012.

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014, pages 740–
755, Cham, 2014. Springer International Publishing.

[7] S. Liu and W. Deng. Very deep convolutional neural network
based image classification using small training sample size.
pages 730–734, Nov 2015.

[8] Bryan A. Plummer, Liwei Wang, Chris M. Cervantes,
Juan C. Caicedo, Julia Hockenmaier, and Svetlana Lazebnik.
Flickr30k entities: Collecting region-to-phrase correspon-
dences for richer image-to-sentence models. Int. J. Comput.
Vision, 123(1):74–93, May 2017.

[9] PyTorch. https://ml-cheatsheet.
readthedocs.io/en/latest/loss_functions.
html.

[10] Sagar Vinodababu. https:
//github.com/sgrvinod/
a-PyTorch-Tutorial-to-Image-Captioning.

[11] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. CoRR, abs/1411.4555, 2014.

[12] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. Show, attend and tell: Neu-
ral image caption generation with visual attention. CoRR,
abs/1502.03044, 2015.

9

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning

