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ABSTRACT
Reinforcement learning is inspired by the way infants learn from their experiences. It uses the feedback from its interactions with
its environment to learn how to make better decisions. Here we focus on the Multi-Armed Bandit (MAB) model, inspired from the
gambling world, a multi-armed bandit is a slot machine with multiple levers. The model assumes each arm has its own probability of
winning the jackpot. The goal of learning in the model is to discover which arm has the highest probability of success, and choosing
it repeatedly. We take a look at different algorithms for optimizing the model, and how adjustments in the models assumptions can
affect which algorithm is best suited for learning. We show each algorithm’s performance compared to its theoretical performance
[Sutton-Barto] in a series of experiments, and demonstrate the trade-offs between the various methods for solving the problem.

Introduction
Related Work
Reinforcement learning is a broadly studied area in machine
learning. It formulates and studies various decision making
problems in real life. It consists of two parts: agent and
environment. The agent can be in a set of possible states,
and it will perform some actions based on the state it
is currently in. The environment will then provide the
feedback to the agent in the form of reward. Based on
the interacting experience with the environment, the agent
will try to learn the environment and a set of rules of how to
behave in the environment in order to get maximum reward.
Reinforcement learning is different from regular MAB in the
way that it chooses actions based on states (contextual MAB
is able to do that as well), and it also considers the benefit
from a series of actions rather than simply the sum of several
separate actions. While reinforcement learning is able to
simulate more complex problems in real life, MAB can be
suitable for some cases, and it has grounded theoretical
support. As an introduction project, we will focus further
on MAB.

Multi-Armed Bandit Problem
We consider the stochastic bandits. The model is
parameterized by K the number of arms, and T the number
of rounds that an agent can pick an arm. In each round,
the agent choose an action and observe the reward from
the chosen action. The goal of the agent is to maximize the
cumulative reward over T rounds.

In the model, we assume we only observe the reward from
the action that we choose, and nothing else. We also assume
each action has its reward distribution, and the reward is
drawn iid. from the distribution every time.

The regret at round t is then defined as the difference
between the optimal cumulative reward and the observed
cumulative reward till round t.

R(t) = µ∗ · t −
t∑

s=1

µ(as) (1)

where µ∗ is the expectation of reward of the optimal action,
as is the action that the agent takes at time step s, and µ(as)
is the expectation of reward of action as.

The goal of each algorithms is to balance exploring the
possible arms while exploiting the expected best arm in
order to minimized Regret.

Experiment Design
Experiment model
This paper simulates 4 different methods {Naive, Epsilon-
Greedy, Upper Confidence Bound, Thompson Sampling}.

In the experiment, all the bandits give binary output, which
is either 0 or 1. The reward distribution is parameterized
by bernoulli distribution with probability p. The simulation
consists of K arms, T rounds, and E repeated experiments.
The parameters are able to be modified by users. The
parameters corresponding to the results given is indicated
in the figures.

The simulation algorithm is shown below. Input is K, E, T.

Algorithm 1 MAB simulation
1: P← random((K, 1))
2: for i in range(E) do
3: Observation← zeros
4: Cumulate_Regret← Zeros
5: Generate_Reward← rand((T,K), re f = P)
6: for i in range(T) do
7: Arm← algo(Observation)
8: update Observation based on Arm and

Generate_Reward
9: update Cumulate_Regret based on Arm and

Generate_Reward
10: end for
11: end for
12: Cumulate_Regret← Cumulate_Regret/E
13: return Cumulate_Regret

The random method selects a random bandit in each trail.
From the observation, the cumulative expected regret is
increasing linearly. The Naive algorithm first selecte each
bandit for several rounds (exploration phase), then always
chooses the bandit with best observed performance. The
Epsilon-Greedy algorithm has probability ε to choose the
bandit with best observed performance so far and probability
1 − ε to randomly pick a bandit. The UCB algorithm uses
the upper and lower confidence bound to decide which arm
is better than others. Thompson Sampling uses the beta
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distribution updated by the observation to decide which
arm is better.

In the work by Aleksandrs, it is proven that for the two arm
MAB model there are theoretical bounds for regret in each
Algorithm. We designed simulations to demonstrate the
convergence of each algorithm to its theoretical bound. Each
theoretical bound gives a maximum regret that cumulative
expected regret will be under. In these experiments we
define the cumulative regret to be the total regret up to the
point of time t, and the expectation is the average cumulative
regret at each time interval t averaged over E experiments.
Therefore, when E is small cumulative expected regret is
much more random and unlikely to have converged to
its theoretical bound, but when E is large the cumulative
expected regret with be a smooth function that increases
monotonically to its bound.

Results
The results backup the theoretical bounds that were derived
in the book.

Figure 1. Average Cumulative Regret with parameters {K = 5, T =
10000, E = 1000}.

Note these simulations do not apply to our theoretical
bounds since K , 2; however, it demonstrates the relative
ability of each algorithm to converge to the optimal arm.
Also note that in this simulation in the Naive Algorithm, N
(number of rounds to explore) must have been set to a very
high number relative to K such that the Algorithm found the
optimal Arm with probability approaching 1. This figure also
shows the characteristics of each algorithm. For example,
Epsilon-Greedy algorithm keeps exploring at all time, so its
regret keeps increasing even in later phase. As a result, we
can see UCB and Thompson Sampling perform better than
other algorithms.

Convergence to Expectation
Due to the inherent randomness of reward at a time interval
t, when an individual experiment is run an Algorithm’s
cumulative regret can deviate greatly from its expectation.
This is especially obvious in the case of the Naive algorithm
where it finds the correct arm early on, and cumulative regret
has a slope of zero for the duration of the experiment.
As the number of experiments is increased we see that
the Cumulative Expected Regret (We define Cumulative
Expected Regret as the average cumulative regret at each

time interval t over all the experiments E) converges to its
theoretical expectation. As anticipated the regret achieved
by each algorithm converged to its expected bound when ran
over a large number of experiments; this is most obvious in
the case of the Naive Algorithm

Figure 2. Convergence of Cumulative Expected Regret of Naive
Algorithm, due to varying numbers of Experiments {1, 100, 10000}.

Fatal Flaw of UCB
The UCB algorithm has an obvious flaw, there exists a
case in which the algorithm will not converge: if the
Lower Confidence Bound of any arm is never greater than
one or more other arm’s Upper Confidence bound. The
algorithm is left oscillating between the remaining arms and
accumulating more regret. The damage to regret caused by
this phenomenon can be seen in figure 4 where the non-
converging UCB accumulates about ten times more Regret.

Figure 3. Pseudo code for UCB Algorithm.

Figure 4. Cumulative Expected Regret of UCB algorithm in both
converging and non-converging scenarios.

Alternate Regret Definition
The definition of regret from equation (1) is from the book.
While understanding this definition, it is reasonable to think
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of another alternate definition of regret: instead of using
expectation of reward, we use the observed reward. That
brings us the definition

R(t) =
t∑

s=1

(r(a∗) − r(as)) (2)

where r(a∗) is the generated reward of the optimal action
if we choose that, and r(as) is the observed reward of the
actual action we chose.

This definition incorporates the randomness from generating
reward. Since reward is generated from some distribution,
we expect this regret to be more unstable. The result is
shown below. Note that in both figures, the regret of naive

Figure 5. Average Cumulative Regret with parameters {K = 5, T =
10000, E = 100}.

Figure 6. Average Cumulative Regret with parameters {K = 5, T =
10000, E = 10}.

algorithm stops increasing after exploration phase. That is
because the number of rounds to explore for each arm is
large enough so that we indeed find the optimal arm. Then
in exploitation phase, the regret is always 0. Also note that
for 10 experiments, the regret is more unstable. Particularly
for epsilon-greedy algorithm, there might be less exploring
rounds in 10 experiments, which results in less regret in
Figure 6.

Conclusion and Future Work
We simulate 4 algorithms for MAB model to plot their
cumulative regret. The regret plot conforms to the
characteristics of each algorithm. We also show the
trend of convergence of cumulative regret to the expected
cumulative regret as the number of experiments increases.
Furthermore, we study how each of our assumption of our
model can affect the result. Particularly, we research on
how the reward distribution of K arms will affect different
algorithms. Finally, we propose an alternate definition of
regret, and simulate to see how this definition differs from
that in the book.
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