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Motivation Research Idea: BC-LSTM with Tensor Fusion Results & Analysis
e Emotion Recognition in Conversations (ERC) has a wide e Vanila BC-LSTM network uses two-level hierarchical LSTM-based
variety of applications in multiple domains, including but not structure to first extract contextualized unimodal representations and then ]
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Analysis

e For both model structures (BC-LSTM and DialogueRNN),
our proposed 1deas achieve comparable performance
compared to baseline.

e Better fusion strategy only slightly improve baseline
BC-LSTM model, possibly indicating the poor quality of

Research Idea: Incorporating Third Modality - Visual acoustic features is more urgent to be solve.

e Adding visual modality to Dialogue-RNN didn’t help
much with model’s performance, probably due to the
reason that video frames often contain multiple faces even
only one of them 1s speaking.

Challenges
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e Multimodal emotion recognition: to figure out how to Tensor Fusion with 3 modalities
develop and adapt algorithms/solutions on multi-party data. (we only use language and acoustic for BC-LSTM)

e Existing SOTA solutions in ERC only leveraged textual data
— remains challenges in multimodal feature extraction,
fusion and alignment for deploying a multimodal solution

e Visual info in the scene 1s highly indicative to emotion. —=> ‘L

e Adapting algorithms to multiple interlocutors and
de-noising acoustic modality since MELD data are based on
TV series.

e Use SlowFast network as CNN-based feature extractor to
acquire the representation of video clips.

e Incorporate visual features by:
o Naive fusion - Concatenation

Dataset o Proposed fusion - Cross Attention following a

hierarchical fashion Emotion - Disgust Future WorR

e Speaker Diarization
o Recognizing speaker from multi-party scenes to capture
the most informative visual information

e MELD: Multimodal EmotionLines Dataset" multimodal
sentiment/emotion recognition dataset Textual Feature ~ Acoustic Feature  Visual Feature

o Multi-modal data for conversations from Friends TV series Naive Fusion - Concatenate
o More than 1300 dialogues and 13000 utterances

e Transformers

e Two sets of labels Acoustic Feature o Instead of using utterance level representations, use
o Emotion labels: {Anger, Disgust, Sadness, Joy, Neutral, U R R word-level features for language modality
Surprise, Fear e ,’/ A | o Extracting corresponding acoustic and vision
o Sentiment labels: {Positive, Negative, Neutral } | WI‘: Wl i s representations using word-level timestamps
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Dialogue

e KEnd-to-end Visual Representation Training
o Instead of applying model(SlowFast) pre-trained on other
A, e TaARRSt e il tasks, integrate the representation extraction process into
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(Sentiment): Positne) (Newtral (Negative) (Negative) AttentionDi1alogueRNN with Hierarchical Cross Attentions the training process.
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